
Oceans & marine



Re-oxygenating the Baltic
The deep waters in the Baltic are severely deoxygenated. Although the causes of the current state are complex, this is mainly a result of increased eutrophication from sewage and agricultural runoff from surrounding lands, which leads to extreme bioproductivity (Rolff et al. 2022). Some species manage to survive in the upper water layers, but many organisms living on the seafloor are severely impacted by the hypoxia, thereby influencing the health of a wide network of ecosystems and biochemical processes. There are attempts to reduce nutrient runoff into the Baltic (see for example: https://helcom.fi/baltic-sea-action-plan/). However, some argue these will be insufficient and argue for engineering solutions to the issue.

Improved fishing practices and management
Fisheries contribute to global CO2 emissions by the extraction of fish, disturbance of coastal and oceanic blue carbon ecosystems, and the use of fossil fuels as their main energy source. Fishing vessels are moreover a major source of short-lived climate forcers like black carbon (McKuin and Campbell 2016), which can have a major effect in Arctic and Northern regions (see Black carbon reduction).

Enhancing oceanic light availability below the photic layer

Seaweed and macro algae cultivation
The potential of carbon sequestration by marine based plants such as mangroves, seagrass and algae, often referred to as blue carbon, and the importance of better understanding it, has clearly been recognised (Mcleod et al. 2011). The IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019) concluded blue carbon can play an important role in both climate regulation and adaptation. The term algae groups together several kinds of marine photosynthetic organisms. These are often subdivided into very small microalgae like phytoplankton, and larger macroalgae like kelp and seaweed. Although there is still large uncertainty about the total amount of carbon sequestered by these marine organisms, a recent estimate by Duarte et al. (2022) indicated that all macroalgae took in as much CO2 as the Amazon rainforest.