
Land-based measures



Agricultural soil management
Terrestrial carbon can be stored in biomass above or below the ground, and in soils themselves. Soil organic matter can form differently, and have different amounts of plant and microbial components depending on the availability of water (Cotrufo and Lavallee, 2022). The large amounts of the Earth that have been brought under cultivation over the past 12.000 years have significantly degraded soil carbon levels, and have released some 110 billion metric tons of carbon (Sanderman et al. 2017). Soil security and health is increasingly being recognised as essential for planetary health (Kopittke et al. (2022).

Conservation and restoration of peatlands and wetlands in taiga and tundra
Wetlands and peatlands play important roles in global carbon cycles. Wetlands are areas that are seasonally covered by water. Globally mangroves are often the main topic of focus when it comes to wetlands (IPCC AR6 WG3, 2022, 7.4.2.8). In the Arctic and Northern regions, peatlands are important wetland elements, and will be the focus of what follows. Such peatlands are very carbon rich and store carbon in biomass below and above ground and in soil carbon. Although they only make up 3% of the Earth’s surface, peatlands store up to 21% of terrestrial carbon, and damaged peatlands contribute close to 5% of anthropogenic CO2 emissions (Leifeld et al. 2019). Peatland drainage between 1850 and 2015 has globally already released 80 Gt CO2-eq, and this figure may climb to 250 Gt CO2-eq by 2100 (Leifeld et al. 2019).
Compared to the global state of such areas, Arctic and Northern wetlands and peatlands remain relatively intact (UNEP 2021), and only around 2% of boreal peatlands are currently converted into croplands (Leifeld and Menichetti 2018). However, increasing attention is being paid to the importance of restoring destroyed areas, which make up 78% of total global peatlands, and preserving endangered ones, especially in light of the effects of climate change on such ecosystems. The Resilience and Management of Arctic Wetlands notes (CAFF 2021) therefore highlight the need for increased wetlands resilience to protect against future damage.

Afforestation, reforestation and forest management
Although the rate of deforestation has slowed over the last few decades, the world is still losing forest cover (FAO 2020). Adequate management, protection, and restoration of existing forests, and the planting of unforested areas, play a crucial role in climate mitigation scenarios (IPCC AR6 WG3), and many countries now include forests in their climate mitigation targets (NDCs).The Northern and Arctic regions are essential in this endeavor since they are home to large swaths of boreal forests that make up 27% of total global forest area (FAO 2020).

Rewilding
Natural climate solutions like conservation or restoration can significantly contribute to climate change mitigation efforts (Griscom et al. 2017). One such category of natural climate solutions is re-wilding.